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A method is developed for simplifying molecular interpretations of nonlinear optical phenomena. General
sum-over-states expressions derived from perturbation theory can be written identically and self-consistently
as simple products of lower-order effects. Electric dipole-allowed expressions for the nonlinear polarizability
reduce to straightforward formulas directly connected to intuitive molecular properties without sacrificing
mathematical rigor. This approach is sufficiently general to allow its application in treating electronic,
vibrational, and vibronic interactions for both parametric (passive) processes (e.g., wave-mixing spectroscopies,
sum- and difference-frequency generation, harmonic generation, etc.) and nonparametric (active) processes
(e.g., hyper-Raman spectroscopy, multiphoton absorption, etc.). Explicit examples for sum-frequency generation
and for four-wave mixing provide a convenient context for interpreting higher order nonlinear optical processes.

1. Introduction
The increasing availability of ultrafast lasers has allowed

unprecedented access to nonlinear optical (NLO) methods for
probing molecular and material properties. As existing NLO
methods are used to probe increasingly diverse molecular
systems and as novel NLO spectroscopic techniques continue
to emerge, the need is growing for the development of
approaches for simplifying the interpretation of NLO measure-
ments at both the molecular and macromolecular levels.

NLO processes can be interpreted in either the time-domain
or the frequency-domain.1-5 The frequency-dependent polar-
izability tensor derived from perturbation theory is obtained
using a sum-over-states (SOS) expansion, including products
of transition moments corresponding to the complete set of
Feynman diagrams for the given NLO process.1,6-8 Equation 1
is a general expression for the microscopic nonlinear polariz-
ability tensorê for an NLO process of ordern.2-4

Equation 1 contains (n + 1)! terms in the braces, and each of
then summations is performed over all accessible states within
the molecular system. The symbolsµji

(0) andω correspond to
the transition dipole from statei to state j and the angular
frequency, respectively. Transition frequencies are defined such
that ωpI ) ωp - ωI, where if the initial state I is the ground
state thenωI ) 0. ST is the overall permutation operator,
indicating that the summations are performed over all permuta-
tions of the field frequencies and corresponding transition dipole
moments.2,3 The factor d! equals the number of identical
permutations arising in the presence of degenerate frequencies.
This general expression can reduce down to previously published

expressions for Raman,9 hyper-Raman,10 second harmonic
generation (SHG),11 three-wave sum-frequency generation
(3WSFG),11 coherent anti-Stokes Raman,12 and several other
NLO processes6 by allowing the frequencies to be degenerate
and/or negative in sign.

The general expression in eq 1 can be used to describe
virtually all NLO and multiphoton processes, including higher
harmonic generation and difference-frequency generation (DFG),
subject to the following approximations. First, the analysis
presented here only holds within the validity of the electric
dipole approximation, although it can be easily extended to
include magnetic dipole, electric quadrupole, and other ef-
fects.6,9,13Second, it is assumed that all states in the summation
are eigenstates of the molecule. Additionally, virtually all general
sum-over-states expressions such as given in eq 1 implicitly
assume Lorentzian line shape functions, corresponding to
exponentially decaying molecular response functions.5 This
approximation often does not rigorously hold in condensed phase
media, in which the time scale for reorganization of the bath
and/or intermolecular reorganization is comparable to the
excited-state lifetime, and the molecular response functions are
more complex than simple exponential functions.5 Nevertheless,
within the limit of inhomogeneous broadening approximated
as an integration over homogeneously broadened Lorentzian
peaks in a static lattice, sum-over-states expressions retain some
degree of rigor while still providing a simplified route for
describing general molecular properties.

Although complete, the full SOS expression in eq 1 is
cumbersome to use for interpreting spectroscopic measurements
and materials properties. For example, in conventional perturba-
tion theory a third-order NLO process generally contains a triple
sum over all accessible states with 24 individual products of
four transition moments within the SOS expression.14 However,
a relatively small subset of the total number of terms within
SOS expansion often dominates under conditions of resonance-
enhancement (i.e., within the rotating-wave approximation),
allowing reduction of the SOS expression in eq 1 into more
compact and intuitive expressions. This approach has been taken
for describing resonance-enhanced SHG15 and 3WSFG,15,16

coherent anti-Stokes Raman spectroscopy (CARS),1,2,17-19 third-* To whom correspondence should be addressed.
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harmonic generation (THG),2,17and three-photon resonant fifth-
order polarizabilities (six-wave), which includes stimulated
three-photon absorption and fifth harmonic generation.17

Two commons formalisms have developed for treating the
electric fields in NLO processes as indicated by eq 2.

If the optical fields are treated as purely real sinusoids as in eq
2b, consistent with many previous treatments in the frequency
domain, then the time-dependent fields implicitly contain both
the time-forward and time-reversed elements. Throughout this
work the simpler form in eq 2a is used. The relationships be-
tween these two different conventions are summarized in several
places.5,20 When using a purely real sinusoidal optical field as
in eq 2b, the number of terms in the full SOS equation doubles
to include the complex conjugate of the polarizability tensor.20

For example, use of eq 2b results in 12 terms6,11,15 in the full
SOS equation for 3WSFG where use of eq 2a yields six terms.3

Two significant limitations arise in the use of resonance-en-
hanced simplifications. First, expressions for only a relatively
small subset of the total number of possible resonant conditions
have been considered previously. As the number and scope of
new NLO measurements continues to expand, the relatively limi-
ted number of existing expressions for resonance-enhanced pol-
arizabilities may or may not apply to a given experiment. Se-
cond, considering just the terms for a single set of assumed
resonances may not adequately capture all of the additional inter-
actions contributing to the total molecular NLO polarizability.

In this work, simple expressions are derived allowing optical
nonlinearity to be expressed within the context of the relatively
compact and intuitive resonant expressions, but without sacrific-
ing the completeness of the full SOS analysis. The molecular
polarizability tensors can be written as simple products of lower
order effects without loss of mathematical rigor.

2. Re-Expressing the SOS Equation

The expression forê(n) can be rewritten in a more compact
form by recognizing that grouping of terms allowsê(n) to be
written as a sum of (n + 1) terms consisting of a product of a
transition moment and a polarizability tensor of orderê(n-1), or
equivalently as a sum ofn(n + 1)/2 terms consisting of a product
of an R(1) tensor and a polarizability tensor of orderê(n-2), or
again equivalently as a sum ofn(n2 - 1)/6 terms consisting of
a product of aâ(2) tensor and a polarizability tensor of order
ê(n-3), etc.

A zero order tensor is defined here to be the transition dipole
vector -µFI

(0), which also determines the overall sign (e.g., a
γ(3) process has overall positive sign and can be described by
products of transition moments with negative sign andâ(2)

tensors with overall negative sign). The transition frequency is
defined such thatωrI ) ωrI - iΓr and ωrI

/ ) ωrI + iΓr, in
which ω andΓ are real quantities andΓ is the damping term
introduced phenomenologically. In practice, the frequency terms
within the parenthetical can be either positive or negative in
sign depending on the nonlinear optical process. Changing the
sign of any given frequency term from the form provided in
the general expressions given in this work also results in a sign
change in the phenomenological damping constant (which is
equivalent to using the complex conjugate of theωrI terms
reported here). For compactness, only one term in each
summation is shown in eq 3, indicating the general form for
the series of terms within the braces. Each summation indicates
an alternative expression for the nonlinear polarizability that is
identically equal to the expression in eq 1. All other terms only
differ in the frequency denominators and by thex, y, and z
components of the transition dipoles and polarizability tensors.
Expansions of the three equivalent expressions shown in the
series of eq 3, explicitly including the polarization/frequency
information contained within the nonlinear polarizabilities
(indicated by the superscripts) are given in eq 4.
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term within the parentheses, such that thei index refers to
-ωn+1, the j index to ω1, etc. The initial and final states
combined with the superscripts indicating the frequency terms
are alone enough to identify the physical process described by
a given tensor. For example, theêFp

jn...kj term in the first
expression in eq 4a can be written out to explicitly include the
frequency contributions asêFp

jn...kj(ωn;...,ω2,ω1).
It is important to note that underlying complexity inherent

within the full SOS analysis is not removed by this simplifying
approach. The reduced expressions are mathematically equiva-
lent to the full SOS expressions, such that potentially complex
frequency dependences may still exist within and between the
embedded lower-order terms. However, the value of this recast-
ing becomes clear when considering specific instances and meas-
urements, examples of which are described in later sections. For
a given NLO process, it is relatively straightforward to identify
the simplified products that will contribute significantly to a
given measurement, and (more importantly) identify those that
can be safely assumed to be negligible. In this sense, the greatest
benefits of this procedure are arguably to help separate “the
wheat from the chaff” when interpreting nonlinear optical and
multiphoton phenomena and to recast the molecular response
tensor in terms of chemically intuitive molecular properties.

2.1. Parametric (Passive) vs Nonparametric (Active)
Processes.The mathematical approach described in eq 3 is
equally applicable for describing incoherent, nonparametric
effects (i.e., processes with different initial and final states),
including Raman scattering, hyper-Raman scattering and three-
photon absorption, as well as parametric processes, including
higher harmonic generation and three- and four-wave mixing.
For a parametric process, in which the initial and final states
are identical, the resulting relationshipωn+1 ) ω1 + ‚‚‚ + ωn

allows each of the sums of frequencies within the denominator
in eq 4c to be replaced by a single frequency (e.g.,ω2 + ‚‚‚ +
ωn - ωn+1 ) ω1).

2.2. Self-Consistency.The general expressions in eqs 3 and
4 are entirely self-consistent. The expression for the tensors of
ordern - 1 can themselves be rewritten as products of transition
moments and tensors of ordern - 2 (again, a zero order tensor
is defined to be the transition dipole vector:-µFI

(0)). Deriving
expressions for polarizability tensors containing multiple reso-
nance-enhancements can be performed in an intuitive way by
applying eq 3 multiple times.

2.3. Sign of the Damping TermΓ. Recently, there has been
some controversy regarding the appropriate choice of sign for
the damping termsΓ, which are implicitly contained in eq 1
and, correspondingly, in eq 3.9,21-28 It has recently been
suggested that the damping terms should be exclusively of
negative sign in full quantum field theory treatments.21,22,28

However, the opposite-sign notation used throughout this work
appears to be universally accepted as being appropriate in
phenomenological treatments of damping in molecules and
materials in which the electric field polarization is treated
semiclassically.9,21-28 An illustrative example confirming that
the opposite sign convention produces the correct sign for
describing the behavior of the optical fields using the expressions
derived in this work is given in the Appendix. For these reasons,
all formulas in this work are presented using the opposite sign
notation for the damping terms.

2.4. Three-Wave Mixing. In this section, the general form
of the SOS expression is applied to interpret 3WSFG, SHG,
and three-wave difference frequency generation (3WDFG). Both
3WDFG and SHG can be interpreted as specific cases of the
more general phenomena of 3WSFG, evaluated with negative

or degenerate frequencies, respectively. Because 3WSFG is a
parametric (passive) process (i.e., the initial and final state are
identical),ω3 ) ω1 + ω2. Evaluation of eq 4 forn ) 2 yields
the following set of relations.

The subscripts 2PA, AR, and SR indicate two-photon absorption,
anti-Stokes Raman, and Stokes Raman tensors, respectively, and
they are included solely for clarity. The initial and final states
combined with the superscripts indicating the frequency terms
are alone enough to identify the physical process described by
a givenR(1) tensor.

Figure 1 corresponds to the six terms in eq 5. The arrows in
red describe the sixR(1) tensors. If the molecular system is
initially in the ground state, only the terms with differences in
the denominators lead to resonance-enhancement (corresponding
to the energy level diagrams in Figure 1, parts b, c, and d). All
possible resonant interactions are necessarily present in each
summation, but many are concealed within combinations of
other effects (e.g., in the summation over the indexp, the
resonant interaction arising forωpI = ω3 is implicitly contained
within the two anti-Stokes Raman terms). Writing out both
forms in eq 5 clarifies the different resonance-enhanced pos-
sibilities.

A. Resonance-Enhanced Three-Wave Mixing.To describe
a particular resonance condition, the rotating-wave approxima-
tion is invoked and only the terms with resonant frequency
denominators are retained. For resonance at the sum-frequency
ω3, eq 5 reduces down to the following expressions, derived in
previous work.15

In simplifying eq 5, the use of purely real wave functions can
be reasonably assumed, as would be expected for electric dipole
transitions between real, nondegenerate initial and final eigen-
states.9 The underscore indicates thatωpI = ω3 is the resonant
interaction in eq 6. Equation 6 can be visualized in Figure 1d.
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Figure 1. Energy level diagrams corresponding to the six 3WSFG
terms in eq 5. If the initial state I is the ground state, processes b, c,
and d can exhibit resonance enhancement. Combinations of red (open
triangle) arrows describe anR(1) tensor. The energies of a given
transition are given bypω.
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As has been demonstrated previously,15 this same set of
expressions is equally applicable under conditions of double-
resonance enhancement, in which an incident frequency and
the sum-frequency are both resonant with real states within the
chromophore. In this limit, theâ(2) tensor is likely dominated
by a single product of a transition moment and a resonance-
enhancedR(1) tensor.15

B. SHG and 3WDFG. Expressions for SHG and 3WDFG
can be easily derived using the general 3WSFG expressions by
allowing for degenerate and negative frequencies, respectively.
In the case of SHG, the expression is divided by 2! to account
for the two equivalent permutations in the frequencies. Detailed
examples can be found in previous work.15,16

2.5. Four-Wave Mixing. Analogous to the case of three-
wave mixing, all parametric four-wave mixing phenomena can
be expressed within the context of four-wave SFG (4WSFG)
by allowing for degenerate and/or negative frequencies. Since
4WSFG is a parametric (passive) process,14 ω4 ) ω1 + ω2 +
ω3. Explicit evaluation of the general expression forê(n) in eq
4 for n ) 3 yields the following three equivalent forms for
describing theγ(3) tensor for 4WSFG.

The subscripts AHR and SHR indicate anti-Stokes hyper-Raman
and Stokes hyper-Raman processes. An inclusive definition of
the hyper-Raman process is used, in which all three-wave
nonparametric processes (i.e., different initial and final states)
with the exception of 3PA are contained within the aegis of
hyper-Raman.Because of the self-consistency inherent within
this mathematical approach, a simplified form for the hyper-
Raman tensor can also be generated using the general expres-
sion forê(n) in eq 3 by setting n) 2 and using different initial
and final states.

A. Degenerate-Wave CARS (DWCARS).Application of
this general approach in systems with degenerate and/or negative
frequencies are easily demonstrated by explicitly considering
the CARS process with a degenerate incident frequency. In this
case,ω2 is set equal toω1 andpω3 corresponds to a negative

energy (i.e., energy withdrawn from the molecular system).
Under these conditions, eq 8 is given by the following form.

Equation 8 differs from eq 7 in two respects. First, the sign on
ω3 is inverted throughout. Second, factors of 2! have been
introduced to account for the two equivalent permutations in
the frequenciesω1 andω2. In theR(1) andâ(2) tensors containing
both thej andk indices (corresponding to the two degenerate
frequencies), the division of 2! is implicitly incorporated within
the definition of the tensors. The expression in eq 8 is equivalent
to the full SOS for DWCARS given by eq 1. Figure 2 contains
10 energy level diagrams corresponding to the 10 terms in eq
8.

B. Resonance-Enhanced CARS.Resonance enhancement
can arise when one of the incident frequencies or a combination
of incident frequencies is resonant with a real transition in the
chromophore. In such a case, only one of the 10 possible
interactions described in eq 8 will contribute significantly to
the resonance-enhanced response. As one example, the most
common experimental configuration for DWCARS exhibiting
resonance-enhancement at the difference-frequencyω1 - ω3

yields the following expression for the resonant nonlinear
polarizability.

The energy level diagram corresponding to eq 9 can b seen in
Figure 2e.

The general approach described by eqs 3 and 8 reduces down
to an expression similar to one published previously for four-
wave processes in the limit of two-photon resonance enhance-
ment.18 However, the use of the expression in eq 8 has the
additional advantage of clearly elucidating all other resonant
and nonresonant interactions that can contribute to the total NLO
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response. For example, we believe this is the first time a link
has been demonstrated connecting CARS and hyper-Raman
spectroscopy in systems exhibiting one-photon resonances. An
example is given by eq 10 for DWCARS performed with a
resonance atωrI = ω4.

2.6. Secular Singularities and Zero Frequencies.An
important caveat to the use of the expression given in eq 1 arises
in the presence of secular singularities, in which the sum of
both the transition frequency and the electric field frequencies
in the denominator approach zero.2,3,17 Secular singularities
occur when the sum of both the transition frequency and the
field frequencies in the denominator approach zero. An example
of this secular singularity occurs in deriving the SOS equation
for degenerate four-wave mixing. The denominators of 16 out
of the total 24 terms contain (ωq - ω + ω), which equals zero
sinceωq ) 0, but these terms should not be confused with a
resonant enhancement. Within the limits of a sum-over-states
approach such as in eq 1 (i.e., for simple exponential molecular
response functions), terms containing secular singularities
collectively sum to zero and can be simply removed from the
full equation in the weak field limit.2,3,17 The expressions for
the molecular polarizability tensors also apply in the limit of
zero or slowly varying frequencies for one or more of the electric
fields, once the resulting changes in the preceding constant
multipliers are included.2,3,6,9,11

2.7. Seven-Wave Mixing.The merits of the simplification
approach described in this work are particularly evident in
considerations of high-order NLO phenomena. The full SOS
equation for seven-wave mixing contains 5040 terms and
requires evaluation over a sextuple summation over all excited
states. By use of the general expression in eq 3, it is possible
write out an equivalent equation in an intuitive and compact
form containing as few as seven terms in a single summation.

3. Discussion

The expressions for 3WSFG and 4WSFG provided in eqs 5
and 7 are applicable for both single-resonance and multiple
resonance-enhancement. Multiple resonances can be easily
included by taking advantage of the inherent self-consistency
within this mathematical approach. In systems with multiple
resonances, the lower-order tensor(s) can also be simplified as
resonance-enhanced products of lower-order effects. Resonance-
enhanced DWCARS, described by the expression in eq 10,
serves as an illustrative example. In the case of a second state
resonant with an appropriate combination of frequencies (e.g.,
for a real state resonant withω1 - ω3 in Figure 2h), one term
within the expression for theârI

jkl dominates the resonance-
enhanced contribution, and the resonance-enhanced portion of
ârI

jkl can be approximated as a simple product of a singleµ(0)R(1)

term from eq 5 with different initial and final states. Similarly,
if the R(1) term also exhibits resonance-enhancement, it will often
be dominated by a single term containing a product ofµ(0)µ(0).

Figure 3 graphically describes the expansion of the molecular
nonlinear polarizability as iterative products of lower-order
effects for the specific case of DWCARS. Each energy level
diagram in Figure 2 for theγ(3) tensor (corresponding to each
term in eq 8) compactly represents a number of different
pathways implicitly contained within the differentâ(2) andR(1)

tensors. To clarify this approach, the energy level diagram in
Figure 2h is expanded in Figure 3. The hyper-Ramanâ(2)

contribution itself implicitly contains six possible combinations
of µR given in eq 5 and Figure 1 (three of which are unique
when ω2 ) ω1) as indicated in Figure 3. Similarly, theR(1)

tensors themselves each contain generally two differentµ(0)µ(0)

combinations, also shown in Figure 3. Consequently, the full
set of pathways connecting the initial and final states in theγ(3)

tensor are compactly contained within the relatively simple
expressions in eq 7.

When applied under specific assumed resonance conditions,
the general expression in eq 3 correctly recovers previously
derived expressions. For 3WSFG with molecules initially in the
ground state, eq 6 reduces to expressions reported previously
under resonance enhancement at the sum-frequency,15 under
resonance enhancement with one of the incident fields, including
the specific case of vibrational SFG spectroscopy,15,16 and
double-resonance.15,29 Two-photon resonances with a single
excited (both Raman and 2PA) have been considered previously
for four-wave processes, including CARS and THG.1,2,17-19

Resonant formulas have also been presented for three-photon
resonant fifth-order polarizabilities (six-wave).17 The approach
described here allows all of these resonance-enhanced condi-

Figure 2. Energy level diagrams corresponding to the ten DWCARS
terms in eq 8. Combinations of red (open triangle) arrows represent a
single R(1) tensor, while combinations of green (open head) arrows
represent a singleâ(2) tensor. The energies of a given transition are
given bypω.

γII
ijkl(-ω4; ω1,ω1, -ω3) ) -1

4p∑
r

{µIr
i (ârI

jkl)SHR

ωrI - ω4
} (10)

úFI
ijklmno(-ω7; ω1,ω2,ω3,ω4,ω5,ω6) )

-1

32p
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p {εFp
onmlkj µpI

i

ωpI
/ + ω7

+
εFp

iklmno µpI
j

ωpI - ω1

+
εFp

ijlmno µpI
k

ωpI - ω2

+
εFp

ijkmno µpI
l

ωpI - ω3

+
εFp

ijklno µpI
m

ωpI - ω4

+
εFp

ijklmo µpI
n

ωpI - ω5

+
εFp

ijklmn µpI
o
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tions, and several not previously considered, to be contained
within the aegis of a single intuitive and general mathematical
approach.

The expressions for three-wave and four-wave mixing in eqs
6 and 9 demonstrate several direct relationships connecting
coherent (parametric) and incoherent processes. A direct
relationship between 2PA and SHG is apparent from eq 5 in
the case ofω2 ) ω1 and has been reported previously.15

Computational and experimental investigations by Cho and co-
workers support a connection between these two processes.30,31

Equations 5 and 7 also suggest several relationships often
overlooked when interpreting NLO effects, including the role
of hyper-Raman and three-photon absorption in four-wave
mixing.

This same mathematical approach is equally applicable for
describing incoherent, nonparametric effects, including hyper-
Raman scattering and three-photon absorption, within the
context of lower-order phenomena. For example, the molecular
tensor describing hyper-Raman scattering can be generated using
eq 5 with different initial and final states, suggesting direct
relationships between hyper-Raman spectroscopy, Raman spec-
troscopy, and 2PA.

4. Conclusions

A mathematical approach was developed for simplifying the
interpretation of NLO processes within the context of lower-
order effects without sacrificing mathematical rigor or generality.
The comparatively unwieldy forms for the full SOS expressions
widely used in previous studies were re-expressed in compact
formulas more intuitively connected to the molecular properties
driving the NLO phenomena. For example, the full SOS
expression for a NLO process of ordern contains (n + 1)! terms
(e.g., 5040 terms forn ) 6) and can easily become prohibitively
lengthy for all but the simplest NLO phenomena. By compari-

son, use of eq 3 allows the full SOS expression to be written
using as few as (n + 1) terms (e.g., seven terms forn ) 6) and
in a form that is more spectroscopically intuitive. This same
mathematical formalism is equally applicable for interpreting
both parametric effects (e.g., harmonic generation, multiple-
wave mixing, etc.) and nonparametric effects (e.g., multiple-
photon absorption, hyper-Raman, etc.). Furthermore, all the
mathematical expressions are entirely self-consistent. Broad
classes of previously reported mathematical expressions describ-
ing resonance-enhanced NLO processes can be directly obtained
from this single general approach. These convenient expressions
provide a simple framework for interpreting the rapidly growing
number of NLO and multiphoton investigations without sacrific-
ing mathematical rigor.
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Appendix: Sign of the Phenomenological Damping
Factors.

Even in areas as well-established as Rayleigh scattering,
Raman scattering, and nonlinear optics, fundamental principles
sometimes warrant reexamination. It has recently been suggested
that full quantum treatment of the nonlinear polarizability tensor
should result in damping constants that are exclusively negative
in sign, in stark contrast to the opposite sign-convention widely
used phenomenologically in sum-over-states expressions derived
from perturbation theory.21,22,28Nevertheless, there appears to
be nearly universal agreement that the opposite sign convention
is appropriate when the damping is introduced in sum-over-
states expressions using semiclassical polarization formalisms
for describing the behavior of the optical fields in linear and
nonlinear polarizabilities.9,21-24,26-28 In this section, a simple
and illustrative example is provided supporting the traditional
opposite sign convention for the phenomenological damping
terms used throughout the present work by confirming that the
same-sign approach does not correctly predict gain in a system
exhibiting a population inversion.

The wave function describing the amplitude of the electric
field componentE for an electromagnetic plane wave propagat-
ing through a dielectric medium is given in eq 2a. Defining a
complex refractive indexn̂ ) n′ + iκ for the medium and
substituting the relationshipk̂ ) k0n̂, wherek0 is the vacuum
wavevector, allows eq 2a to be rewritten in the following form.

The intensityI as a function of the distancex through the
medium is proportional toEE*.

The second equality is simply the Beer-Lambert law with an
absorption coefficientRc (not to be confused with the linear
polarizability tensorRFI

(1)). From eq A.2, the relationship be-
tween the absorption coefficientRc and the imaginary portion
of the refractive indexκ is straightforward.

Figure 3. Expansion of a single energy level diagram in Figure 2h
for DWCARS. Red (open triangle) arrows describeR(1) tensor, while
green (open head) arrows describe aâ(2) tensor. The three green arrows
shown in the topmost diagram combine to compactly represent a single
hyper-Raman tensor, which itself contains contributions from several
different energy level diagrams. The hyper-Raman tensor can generally
be rewritten as six combinations of transition moments andR tensors,
three of which are unique in DWCARS (given by the middle three
diagrams). Similarly, eachR(1) tensor within the hyper-Raman tensor
contains two unique contributions (given by the bottom two diagrams).

E(x,t) ) E0e
-i(ωt-k0n'x)e-k0κx (A.1)

I(x) ) I0e
-2k0κx ) I0e

-Rcx (A.2)
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The constantsk0, ω, andc are all purely real and positive.
If κ > 0, the imaginary component of the refractive index

results in exponential loss in the intensity of the beam with
distancex through the medium, consistent with stimulated
absorption. Conversely, exponential gain in the beam intensity
will arise if κ < 0, which can occur in systems with population
inversions and is the founding principal underpinning lasers.

The relationship betweenκ and the linear molecular polarizabil-
ity RFI

(1) describing Rayleigh scattering is relatively straightfor-
ward to demonstrate. The first-order linear molecular polariz-
ability tensor is given by the following expression (and can also
be obtained from eq 3).9

The ( sign on the secondiΓp term indicates the two different
forms for the sign of the damping factor that have been
proposed. The linear polarizability for Rayleigh scattering is
obtained by setting the final state F equal to the initial state I
(such thatω1 ) ω2 ) ω) and dividing by two to account for
the 2! degenerate frequency permutations. The macroscopic
linear polarizability generated in an extended medium is given
by summing the contributions of each molecule.

Systems Initially in the Ground State. If the molecular
system is assumed to be initially in the ground state, only the
first term in eq A.4 and its complex conjugate can contribute
to the resonance-enhanced response. Near resonance with a
particular real excited statep, the real and imaginary contribu-
tions to the resonant portion ofR(1) for Rayleigh scattering (and
correspondingly toø(1) for reflection and refraction) can be
separated by multiplying the numerator and denominator of eq
A.4 by the complex conjugate of the denominator.

In eqs A.6 through A.8, the constantC1 is necessarily a purely
real and positive number ifp is a real, time-independent (long-
lived) state. The linear polarizabilityø(1) can be connected
directly to the complex valued refractive index.9

Since the imaginary portion ofø(1) contributes exclusively to
the imaginary portion ofn̂2, the following relationship emerges.

Because all the constants in the numerator and denominator are
real and positive,κ has the same sign asΓ and predicts a loss
in the beam intensity as a function of propagation distance
through the medium. Of course, this result is not at all surprising.
For frequencies resonant with transitions from the ground state
to an unoccupied excited state, energy is dissipated into the
molecular system and correspondingly removed from the beam.

Systems Initially in an Excited State.Now, a system is
considered in which the resonant interaction is with a state that
is lower in energy than the initial state. In this case, stimulated
emission should result in an exponential increase in the beam
intensity with increasingx and a negative value ofκ in eq A.2.
In the case of stimulated emission, the second term in the
polarizability tensor in eq A.4 is resonant, sinceEI ) pωI > Ep

) pωp. The stimulated emissive contribution to the linear
polarizability tensorø(1) can be summarized using a procedure
exactly analogous to that used for stimulated absorption.

The relationships connecting polarizability and refractive index
in eq A.9 yield the following two possibilities.

Because the proportionality constant in eq A.14 is real and
positive, the negative and positive sign possibilities forΓ
correspond to the opposite and same sign conventions, respec-
tively. This same result is obtained by switching the frequency
terms ωI and ωp and their corresponding indices in the
expression describing stimulated absorption between the same
two states and using the Hermiticity relationshipRFI

ij (-ω2;ω1)
) RFI

ji (ω1;-ω2)*.1,9

Implications of Same-Sign vs Opposite-Sign Usage.Al-
though the same-sign and opposite-sign approaches yield
virtually identical results for stimulated absorption in systems
initially in the ground state, they lead to very different predicted
behaviors for stimulated emission. Whereas the opposite-sign
convention correctly predicts an increase in the beam intensity
through stimulated emission in a system exhibiting a population
inversion, the same-sign convention predicts attenuation of the
beam for both stimulated absorption and stimulated emission.

Causality arguments against the same-sign usage stem from
considerations of dispersion. Irrespective of the sign of the
damping term, comparison of eqs A.7 and A.12 indicate that
the dispersion characteristics of the real portion of the refractive
index for a given incident wavelengthω1 are opposite in sign
for stimulated absorption vs stimulated emission. Again, this
result is appealing, since the two processes should negate each
other both on and off resonance in a system with an equal
population in the ground and excited state. However, consid-
erations of Kramers-Kronig dispersion relations, which follow
directly from arguments of causality, predict that the imaginary
portion of polarizability tensor should invert in sign if the
dispersion characteristics describing the real portion are opposite
in sign. Again, only the traditional opposite-sign convention
correctly recovers this relationship in phenomenological treat-

Rc ) 2k0κ ) 2ωκ/c (A.3)

RFI
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∑
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i µpI
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+
µFp

j µpI
i

(ωp - ωF) + ω2 ( iΓp
} (A.4)

ø(1) ) N
Vε0

〈R(1)〉 (A.5)

øij = C1

(ωp - ωI - ω1 + iΓp)

[(ωp - ωI - ω1)
2 + Γp

2]
(A.6)

Re(øij) ) C1

(ωp - ωI) - ω1

[(ωp - ωI - ω1)
2 + Γp

2]
(A.7)

Im(øij) ) C1

Γp

[(ωp - ωI - ω1)
2 + Γp

2]
(A.8)

n̂2 ) n′2 - κ
2 + 2in′κ ) ε0ø

(1) + 1 (A.9)

κ )
C1ε0Γ

2n′[(ωp - ωI - ω1)
2 + Γp

2]
∝ Γp (A.10)

øij = C2

- (ωI - ωp) + ω1 -iΓp

[- (ωI - ωp) + ω1]
2 + Γp

2
(A.11)

Re(øij) ) C2

- (ωI - ωp) + ω1

[- (ωI - ωp) + ω1]
2 + Γp

2
(A.12)

Im(øij) ) C2
-Γ

[- (ωI - ωp) + ω1]
2 + Γp

2
(A.13)

κ ∝ -Γp (A.14)
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ments of damping. From these two pieces of evidence, it is clear
that the same-sign approach is not applicable when damping is
introduced phenomenologically for treating the behavior of the
optical fields in semiclassical treatments such as performed
here, consistent with the conclusions of several previous
studies.9,21-24,26-28

Note Added after ASAP Publication. There was an error
in eq 9 in the version published ASAP January 29, 2005. The
corrected version was published ASAP February 17, 2005.
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